3.9.8 \(\int \frac {(a+b \sec (c+d x))^2}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [808]

Optimal. Leaf size=135 \[ -\frac {2 \left (5 a^2+3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 b^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+3 b^2\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}} \]

[Out]

-2/5*(5*a^2+3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+4/3
*a*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2/5*b^2*sin(d*x+c
)/d/cos(d*x+c)^(5/2)+4/3*a*b*sin(d*x+c)/d/cos(d*x+c)^(3/2)+2/5*(5*a^2+3*b^2)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {4349, 3873, 3853, 3856, 2720, 4131, 2719} \begin {gather*} -\frac {2 \left (5 a^2+3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 \left (5 a^2+3 b^2\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {4 a b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 b^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^2/Cos[c + d*x]^(3/2),x]

[Out]

(-2*(5*a^2 + 3*b^2)*EllipticE[(c + d*x)/2, 2])/(5*d) + (4*a*b*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*b^2*Sin[c
+ d*x])/(5*d*Cos[c + d*x]^(5/2)) + (4*a*b*Sin[c + d*x])/(3*d*Cos[c + d*x]^(3/2)) + (2*(5*a^2 + 3*b^2)*Sin[c +
d*x])/(5*d*Sqrt[Cos[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {(a+b \sec (c+d x))^2}{\cos ^{\frac {3}{2}}(c+d x)} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^2 \, dx\\ &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) \left (a^2+b^2 \sec ^2(c+d x)\right ) \, dx+\left (2 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {5}{2}}(c+d x) \, dx\\ &=\frac {2 b^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{3} \left (2 a b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (\left (5 a^2+3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx\\ &=\frac {2 b^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+3 b^2\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}+\frac {1}{3} (2 a b) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\frac {1}{5} \left (\left (5 a^2+3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 b^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+3 b^2\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}-\frac {1}{5} \left (5 a^2+3 b^2\right ) \int \sqrt {\cos (c+d x)} \, dx\\ &=-\frac {2 \left (5 a^2+3 b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {4 a b F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 d}+\frac {2 b^2 \sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a b \sin (c+d x)}{3 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 \left (5 a^2+3 b^2\right ) \sin (c+d x)}{5 d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.25, size = 124, normalized size = 0.92 \begin {gather*} \frac {-6 \left (5 a^2+3 b^2\right ) \cos ^{\frac {3}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 a b \cos ^{\frac {3}{2}}(c+d x) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )+20 a b \sin (c+d x)+15 a^2 \sin (2 (c+d x))+9 b^2 \sin (2 (c+d x))+6 b^2 \tan (c+d x)}{15 d \cos ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^2/Cos[c + d*x]^(3/2),x]

[Out]

(-6*(5*a^2 + 3*b^2)*Cos[c + d*x]^(3/2)*EllipticE[(c + d*x)/2, 2] + 20*a*b*Cos[c + d*x]^(3/2)*EllipticF[(c + d*
x)/2, 2] + 20*a*b*Sin[c + d*x] + 15*a^2*Sin[2*(c + d*x)] + 9*b^2*Sin[2*(c + d*x)] + 6*b^2*Tan[c + d*x])/(15*d*
Cos[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(632\) vs. \(2(171)=342\).
time = 0.37, size = 633, normalized size = 4.69

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 b a \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{6 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )+\frac {2 b^{2} \left (24 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-12 \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{5 \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}+\frac {2 a^{2} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(633\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^2/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*b*a*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2
*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*
x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))
)+2/5*b^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*s
in(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/
2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(2*sin(1/2*
d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+
8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli
pticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)+2*a^2/sin(1/2*d*x+1/2*
c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*c
os(1/2*d*x+1/2*c)-(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2))))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^2/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.41, size = 223, normalized size = 1.65 \begin {gather*} \frac {-10 i \, \sqrt {2} a b \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 10 i \, \sqrt {2} a b \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (5 i \, a^{2} + 3 i \, b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (-5 i \, a^{2} - 3 i \, b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (10 \, a b \cos \left (d x + c\right ) + 3 \, {\left (5 \, a^{2} + 3 \, b^{2}\right )} \cos \left (d x + c\right )^{2} + 3 \, b^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

1/15*(-10*I*sqrt(2)*a*b*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 10*I*sqrt(2
)*a*b*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*sqrt(2)*(5*I*a^2 + 3*I*b^2)
*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2)*
(-5*I*a^2 - 3*I*b^2)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x
 + c))) + 2*(10*a*b*cos(d*x + c) + 3*(5*a^2 + 3*b^2)*cos(d*x + c)^2 + 3*b^2)*sqrt(cos(d*x + c))*sin(d*x + c))/
(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \sec {\left (c + d x \right )}\right )^{2}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**2/cos(d*x+c)**(3/2),x)

[Out]

Integral((a + b*sec(c + d*x))**2/cos(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^2/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^2/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [B]
time = 1.67, size = 113, normalized size = 0.84 \begin {gather*} \frac {6\,b^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {5}{4},\frac {1}{2};\ -\frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )+30\,a^2\,{\cos \left (c+d\,x\right )}^2\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )+20\,a\,b\,\cos \left (c+d\,x\right )\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{15\,d\,{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/cos(c + d*x))^2/cos(c + d*x)^(3/2),x)

[Out]

(6*b^2*sin(c + d*x)*hypergeom([-5/4, 1/2], -1/4, cos(c + d*x)^2) + 30*a^2*cos(c + d*x)^2*sin(c + d*x)*hypergeo
m([-1/4, 1/2], 3/4, cos(c + d*x)^2) + 20*a*b*cos(c + d*x)*sin(c + d*x)*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x
)^2))/(15*d*cos(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2))

________________________________________________________________________________________